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Abstract-The design of the compensation filter of a geneealicomb filter (GCF) using Maximally-Flat
minimization is presented. The coefficients of fireposed compensation filter are obtained by sglvimo
linear equations. The filter operates at a low eaité considerably reduces the passband droop @& @kefilter.

Index Terms-GCF filter, Maximally-Flat, FIR filters.
Now, we consider a GCF design example using the

1. INTRODUCTION following parameterd/=6,D=10py = 4 andq,= [

) L ) , -0.54,-0.92 , 0, 0.92, 0.54] [6]. Figure 1(a) shdivs
The simplest decimation filter is the cascadedyagnitude response of the resulting filter, whhe t
integrator comb (CIC) filter, which is described1}.  passband detail is illustrated in Fig. 1(b). Nottbe
Unfortunately, this filter has a high passband grooincreased width and attenuations at the foldingdban
and low stopband attenuation. In order to imprdwee t Unfortunately, the GCF filter exhibits a high paasst

passband as well as the stopband characteristias ofifoop (see Fig. 1(b)).

CIC filter, different methods are proposed, for . _ Frequsncy raspanzs
example, [2]-[6]. A generalized CIC decimationdilt zal '
(GCF) is introduced in [6] to improve the stopband

attenuation as well as the spanned bands around th
zeros of the CIC filter (folding bands).that is,eth _
frequency points /D where D is the decimation sl
factor, andk=1,.....,D-1. sl
The transfer function of the GCF filter is exprabss,

Gain dB

N sin(an/2) (ny 1-z PejwmD 1)
n=1lgin(a,D/2) =1 1-z-te—jan

HGCFN (2) =

WhereD stands for the decimation factor amg n =
1,...N, are rotational parameters optimized such that
the minimum attenuation within folding bands is
maximized.

The discrete- time Fourier transform (DTFT) of
Hecr, (2)is

. (D -1) C
H N(e”") = H(w)exp| —j (a)N + an>

Gain dB

(2)
Fig.1. Magnitude response of the GCFfoe= 5,D = 10 and v =
where 4.
o) 1_[ sin(a, /2) N sin((w + a,)D/2) 2. GCF COMPENSATIONFILTER
w) =
1 Lsin(an,D/2)1 1 sin((w + @,)/2) The transfer function of the proposed GCF

(3) compensation filter is
Note that, generally the filterHscr, (z) has linear-
phase characteristics and complex- valued coefiisie P(z°) = a + bz™" + az™?" 4)

.The real-valued filter coefficients ofi;cr, (z) are
obtained satisfying, = ay_,.A useful choice for, Where a and b are real-valued constants .The

is @, = q,u/vD , wherev is a positive integer compensation filter is cascaded with the GCF, as
and,is a real value in the range [-1,1] [6]. Withs_hOW“ ir; Fig. 2(a). Using the multirate identity0[1
,=0, n=1,.....,N, traditional CIC filter is obtained. filter P(z") can

73



International Journal of Research in Advent Technology, Vol.3, No.6, June 2015
E-1SAN: 2321-9637

put — —>1 g sery @2 P(D) \l/D —> Output
(a)
mput —>| H, e (@) \l/D —> P(z) —> Output

Fig.2. Decimation block diagram.(a) Generalized !
Filter and compensatidiiter.(b) Efficient structure for decimatic

be moved to a lower rate, resulting in a more ffit
structure shown in Fig. 2(b).The casc: of the
compensation filter BC) and the GCFyields tt
following overall transfer function:

G(2) = Hgcp(2)P(27) (5)
By performing the DTFT, equation (5) becot
i _ jo((D-DN+2D)
G(e)=e"" 2  H(w)Pr(Dw) (6)
Where P,(Dw) is the amplitude responscof
P(e/®P), which is given by
Pr(Dw) = b + 2a cos(Dw) @)

Next is find out the coefficients anc b.We define the
error function in the frequencsange [Cw,], where
w, is the upper edge frequency of the signal be
which is necessary foreserve after decimation,

E(w) = Hw)Pr(Dw) — 1 (8)
In order to find coefficients and b, we impose tt
conditionin which the error function should be zerc
frequencies = Oando = w,, Wherew, is less than or
equal tow,.For ® = 0, from (3), (6—(8), it follows
that

©)

Similarly, for w = w, (see (6)8)), the impose:
condition results in

2a+b =1

H(wgy)(2a cos(Dwy) + b)=1 (20)

Solving equations (9) and (10), the valuesa andb
respectively are given as

1
_1 1_H(w0)
a=3 1—cos(Dwyg) 1)
b=1-2a (12)

Equations (11) and (12yexgeneral equations, whe
the value ofw,depends on the method used for
Minimization of error,as desibed in the following
Here, we consider error fation E@) to be
maximally flatatw = O, i.e., the error function has
many derivatives that are viahing ate = 0 as

possible.Since the error function is an even funct
of o, its odd indexedlerivatives evaluated ai = 0
are automatically zer@herefore, it follows thi

d?’E(w)

dw (13)

ywo0 =0

After small computatins from (9), (10) and (13), v

B Hﬂ'(w)
- 2D?

w=0

(14)
get, whered” (w)is the second derivative
H(w)with respect tan. Now, weobtain a closed-form
equation for first derivative of (). First, consider
the following derivative.

d {sin (w+ a,)D/2) } _ sin ((w + a,)D/2)
dw | sin((w+ an)/2) sin ((w + @,)/2)
D 1
X (?cot ((w+an)D/2) — 3 cot ((w + afn)/Q))
(15)

Using (3), (19, and the producrule for derivatives,
the first derivative of Hf),

H'(w) = H‘(;J)

N .
'3 Z(DCO'G(DUJ _;aﬂ
n=1

)= ()

(16)
Notice that the ealuation of above equationat= 0
is equal to zero sinae, = a,_, and cot(:) is an odd

function. Therefore,
N

H"(w) :@ [Z (cscg(%) -D? cch(D%))

n=1
+(;@cot@wgan)_m(wg%)))2 _
@a7)

Substitutingm = 0 into (17) and (1),we get the value
of a as given in Eqg.(19).Thusoplving (13) and using
(12), the value of a is given by:

1 & 1 D’
- 8?2 Z ) R :
4 sin“(a,/2) sin®(an,D/2)

1=1
(18)

a

For the traditional CIC congmsation filter «,,=0 for
n=1,...,N),the value of a reduce

N(1 - D?)
T 24D2
(19)
It can easily be shown that the coefficient a toe
maximally flat case defined in () can also be
obtained from generaquation (11) by replacinw,
with zero and applying thieHé spital rule.
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3. DICUSSION AND RESULTS

<7

Fig. 6. Compensation filter structur€z). (a) Maximally fla

Observe that the structure shown in Fig. 6 reqt
one multiplier and three addeis. the following we
analyze the passband draBp after compensation.
The compensation filter in [4] is a multiplierleiser
with only three adders. This filter exhibits bel
compensation in  narrowband and has
computational load than [3], whereas the metho
[3] has better results in widebanompensation(for
more details, see [4]).We illustrate the propc
design with one example.

Example. Consider the design of a GCF compense
filter with the following paramete: D = 10,N = 5,
w, =0.457/D, anda, =q,n/4D forn =1, 2, 3, 4, ¢
where ¢,=[-0.54,-0.92, 0, 0.92, 0.] [6]. The
corresponding passbanddroop and stopba
attenuation of the GCF awp = -3.71 dB andAs =
—-66.15 dB, respectively, as shown Fig.7.For
maximally flat case. Using ()8it follows that a =
—0.20765 and b = 1.4291The passbar droop after
compensation is —-1.@8. Similarly, the stopbai
attenuation becomes -61.01dB.

TABLE 1
PARAMETERS IN THE DESIGN EXAMPL]

PARAMETERS

GCF,

MAXIMALLY FLAT

PassbandAttenuation
(4p)

-3.71

-1.08

StopbandAttenuation
(4s)

-66.15

-61.01

a

-0.20765

b

-1.42911

Wo

0

Frequency respanse

Compensated GCF Maximally Flat
Lok ———GCF

Gain dB

(@)

Gain 4B
= &
] - (L}
J

Frequency

(b)

Fig.7. Overall magnitde response of the GCF and the
compensation filters in the design exarr

4. CONCLUSIONS

A novel approach for a GClcompensation filter
designhas been presented. The technique is basi
a 2D-ordercompensation filter, which becomes
second-order filter aftemoving to a low ral. The
proposed method includes theaximally flat designs.
Considering that thenaximally flat design need only
one multiplier anccould be a good choice for narr
passbandompensation. However, for wi-passband
compensationthe best choice is the minimax desi
which requires two multipliers.
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