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Abstract-The design of the compensation filter of a generalized comb filter (GCF) using Maximally-Flat 
minimization is presented. The coefficients of the proposed compensation filter are obtained by solving two  
linear equations. The filter operates at a low rate and considerably reduces the passband droop of the GCF filter. 
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1. INTRODUCTION 

The simplest decimation filter is the cascaded-
integrator comb (CIC) filter, which is described in [1]. 
Unfortunately, this filter has a high passband droop 
and low stopband attenuation. In order to improve the 
passband as well as the stopband characteristics of a 
CIC filter, different methods are proposed, for 
example, [2]-[6]. A generalized CIC decimation filter  
(GCF) is introduced in [6] to improve the stopband 
attenuation as well as the spanned bands around the 
zeros of the CIC filter (folding bands).that is, the 
frequency points 2πk/D where D is the decimation 
factor, and k=1,….., D-1. 
The transfer function of the GCF filter is expressed as, 
 �������� = ∏ �����/��������/������ ∏ �����������

��������������            (1) 
 
Where D stands for the decimation factor and  �, n = 
1,…,N, are rotational parameters optimized such that 
the minimum  attenuation  within folding bands is 
maximized. 
The discrete- time Fourier transform (DTFT) of ��������is 
 

�����!"#$% = ��&� exp *−, �- − 1�2 0&1 + 3  �
�

��� 45 

                                                                                            (2) 
 
where 
 

��&� = 6 sin� �/2�sin� �-/2�
�

��� 6 sin��& +  ��-/2�sin��& +  ��/2�
�

���  

                                                                                           (3) 
Note that, generally the filter  �������� has linear-
phase characteristics and complex- valued coefficients 
.The real-valued filter coefficients of  �������� are 
obtained satisfying � =  ���.A useful choice for  � 
is   � =  :�;/<- , where v is a positive integer   
and:�is a real value in the range [-1,1] [6]. With  �=0, n=1,……,N , traditional CIC filter is obtained.  

Now, we consider a GCF design example using the 
following parameters 1=6,-=10,< = 4 and :�= [ 
-0.54,-0.92 , 0, 0.92, 0.54] [6]. Figure 1(a) shows the 
magnitude response of the resulting filter, while the 
passband detail is illustrated in Fig. 1(b). Notice the 
increased width and attenuations at the folding bands. 
Unfortunately, the GCF filter exhibits a high passband 
droop (see Fig. 1(b)).  

 
            (a) 

             (b) 
 

Fig.1. Magnitude response of the GCF for 1 = 5, - = 10 ABC < =4. 
2. GCF COMPENSATION FILTER 

The transfer function of the proposed GCF 
compensation filter is 
 E���� = A + F��� + A����                   (4) 
 
Where a and b are real-valued constants .The 
compensation filter is cascaded with the GCF, as 
shown in Fig. 2(a). Using the multirate identity [10], 
filter P(��) can  
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Fig.2. Decimation block diagram.(a) Generalized CIC 
Filter and compensation filter.(b) Efficient structure for decimation.
 
be moved to a lower rate, resulting in a more efficient 
structure shown in Fig. 2(b).The cascade
compensation filter P(��) and the GCFyields the 
following overall transfer function: 
 

 G��� = �������E����                             

 
By performing the DTFT, equation (5) becomes
 

               G!"#$% 	 "� 
�H!���I��JK�

K

 
Where EL�-&� is the amplitude response 
E�"#$��, which is given by 
 

 EL�-&� 	 F 2 2A cos
 
Next is find out the coefficients a and
error function in the frequency range [0,
&O is the upper edge frequency of the signal band, 
which is necessary to preserve after decimation, i.e.
 
                       P�&� 	 ��&�EL�-&�
 
In order to find coefficients a and b, we impose the 
condition in which the error function should be zero at 
frequencies ω = 0and ω = &Q, where 
equal to &Q.For ω = 0, from (3), (6)
that 
                             2A 2 F 	 1                                    
 
 Similarly, for & 	 &Q (see (6)-(8)), the imposed 
condition results in  
 

 ��&Q��2A cos�-&Q� 2

Solving equations (9) and (10), the values of 
respectively are given as 
 

A 	 �

�

�� �
R�H

��ST���

F 	 1 + 2A 
Equations (11) and (12) are general equations, where 
the value of &Qdepends on the method used for the 
Minimization of error,as described in the following.
Here, we consider error function E(
maximally flat at ω = 0, i.e., the error function has as 
many derivatives that are vanishing at 
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shown in Fig. 2(b).The cascade of the 

) and the GCFyields the 
 

                             (5) 

By performing the DTFT, equation (5) becomes 

�%

��&�EL�-&�    (6) 

is the amplitude response of  

cos�-&�              (7) 

and b.We define the 
range [0,&O], where 

upper edge frequency of the signal band, 
preserve after decimation, i.e. 

� � + 1                 (8) 

and b, we impose the 
in which the error function should be zero at 

, where &Q is less than or 
(3), (6)–(8), it follows 

                                    (9) 

(8)), the imposed 

� 2 F�=1              (10) 
 

Solving equations (9) and (10), the values of a and b  

�HU�

��$U�
   (11) 

   (12) 
re general equations, where 

depends on the method used for the  
ribed in the following. 

ction E(ω) to be 
 = 0, i.e., the error function has as 

ishing at ω = 0 as 

possible .Since the error function is an even function 
of ω, its odd indexed derivatives evaluated at 
are automatically zero. Therefore, it follows that

VKW�$�

V$
,$→Q 	

 
After small computations from (9), (10) and (13), we 
 
 

get, where �YY�&�is the second derivative of
H(ω)with respect to ω. Now, we 
equation for first derivative of H
the following derivative.  

    
 
Using (3), (15), and the product 
the first derivative of H(ω), 

Notice that the evaluation of above equation at 
is equal to zero since  � 	  ��
function. Therefore, 

Substituting ω = 0 into (17) and (14
of a as given in Eq.(19).Thus, 
(12), the value of a is given by: 

 
For the traditional CIC compensation filter (
n = 1, . . . , N), the value of a reduces to
 

A 	
1�1 + -

24-�

                                                                               
It can easily be shown that the coefficient a for the 
maximally flat case defined in (18
obtained from general equation (11) by replacing 
with zero and applying the L’Hô
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.Since the error function is an even function 
derivatives evaluated at ω = 0 
Therefore, it follows that 

	 0  (13) 

ons from (9), (10) and (13), we  

  (14) 
is the second derivative of 

Now, we obtain a closed-form 
equation for first derivative of H(ω). First, consider 

                      (15) 

), and the product rule for derivatives, 

                                  
(16) 

valuation of above equation at ω = 0 
�� and cot(·) is an odd 

                        
(17) 

 = 0 into (17) and (14),we get the value 
 solving (13) and using 
 

                                
(18) 

ensation filter ( �=0  for 
n = 1, . . . , N), the value of a reduces to 

-��
�  

                                                                               (19) 
It can easily be shown that the coefficient a for the 

flat case defined in (18) can also be 
equation (11) by replacing &Q 

L’Hôspital rule. 
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3. DICUSSION AND RESULTS 

Fig. 6. Compensation filter structure P(z). (a) Maximally flat
 
Observe that the structure shown in Fig. 6 requires 
one multiplier and three adders. In the following we 
analyze the passband droop Z[ after 
The compensation filter in [4] is a multiplierless filter 
with only three adders. This filter exhibits better 
compensation in narrowband and has less 
computational load than [3], whereas the method in 
[3] has better results in wideband c
more details, see [4]).We illustrate the proposed 
design with one example. 
 
Example. Consider the design of a GCF compensation 
filter with the following parameters
&O =0.45 π/D, and  � = :�π/4D for n = 1, 2, 3, 4, 5, 
where :�=[−0.54,−0.92, 0, 0.92, 0.54
corresponding passband droop and stopband
attenuation of the GCF are Ap = −3.71
−66.15 dB, respectively, as shown in
maximally flat case. Using (18), it
−0.20765 and b = 1.42911. The passband
compensation is −1.08dB. Similarly, the stopband
attenuation becomes −61.01dB. 
 
                               TABLE 1 

PARAMETERS IN THE DESIGN EXAMPLE

PARAMETERS \]^_ MAXIMALLY FLAT

PassbandAttenuation 
(`[) 

-3.71 

StopbandAttenuation 
(`a) 

-66.15 

a  

b  

&Q  
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Observe that the structure shown in Fig. 6 requires 
In the following we 

fter compensation. 
The compensation filter in [4] is a multiplierless filter 
with only three adders. This filter exhibits better 
compensation in narrowband and has less 
computational load than [3], whereas the method in 
[3] has better results in wideband compensation(for 
more details, see [4]).We illustrate the proposed 

Consider the design of a GCF compensation 
with the following parameters: D = 10, N = 5, 

/4D for n = 1, 2, 3, 4, 5, 
−0.54,−0.92, 0, 0.92, 0.54] [6]. The 

droop and stopband 
−3.71 dB and As = 

.15 dB, respectively, as shown in Fig.7.For 
), it follows that a = 

. The passband droop after 
dB. Similarly, the stopband 

PARAMETERS IN THE DESIGN EXAMPLE 

MAXIMALLY FLAT 

-1.08 

-61.01 

-0.20765 

-1.42911 

0 

(a) 

(b) 

Fig.7. Overall magnitude response of the GCF and the                        
compensation filters in the design example.
 

4. CONCLUSIONS 

A novel approach for a GCF 
design has been presented. The technique is based on 
a 2D-ordercompensation filter, which becomes a 
second-order filter after moving to a low rate
proposed method includes the maximally
Considering that the maximally 
one multiplier and could be a good choice for narrow
passband compensation. However, for wide
compensation, the best choice is the minimax design, 
which requires two multipliers. 
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